Twisted Geometric Satake Equivalence

نویسندگان

  • MICHAEL FINKELBERG
  • SERGEY LYSENKO
چکیده

Let k be an algebraically closed field and O = k[[t]] ⊂ F = k((t)). For an almost simple algebraic group G we classify central extensions 1 → Gm → E → G(F) → 1, any such extension splits canonically over G(O). Fix a positive integer N and a primitive character ζ : μN (k) → Q ∗ l (under some assumption on the characteristic of k). Consider the category of G(O)biinvariant perverse sheaves on E with Gm-monodromy ζ. We show that this is a tensor category, which is tensor equivalent to the category of representations of a reductive group ǦE,N . We compute the root datum of ǦE,N .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Satake, Springer Correspondence, and Small Representations

For a simply-connected simple algebraic group G over C, we exhibit a subvariety of its affine Grassmannian that is closely related to the nilpotent cone of G, generalizing a well-known fact about GLn. Using this variety, we construct a sheaf-theoretic functor that, when combined with the geometric Satake equivalence and the Springer correspondence, leads to a geometric explanation for a number ...

متن کامل

Geometric Satake, Springer Correspondence, and Small Representations Ii

Abstract. For a split reductive group scheme Ǧ over a commutative ring k with Weyl group W , there is an important functor Rep(Ǧ, k) → Rep(W, k) defined by taking the zero weight space. We prove that the restriction of this functor to the subcategory of small representations has an alternative geometric description, in terms of the affine Grassmannian and the nilpotent cone of the Langlands dua...

متن کامل

Moduli of metaplectic bundles on curves and Theta-sheaves

Historically θ-series have been one of the major methods of constructing automorphic forms. A representation-theoretic appoach to the theory of θ-series, as discoved by A. Weil [18] and extended by R. Howe [12], is based on the oscillator representation of the metaplectic group (cf. [17] for a recent survey). In this paper we propose a geometric interpretation this representation (in the nonram...

متن کامل

Chiral Principal Series Categories I: Finite Dimensional Calculations

This paper begins a series studying D-modules on the Feigin-Frenkel semi-infinite flag variety from the perspective of the Beilinson-Drinfeld factorization (or chiral) theory. Here we calculate Whittaker-twisted cohomology groups of Zastava spaces, which are certain finite-dimensional subvarieties of the affine Grassmannian. We show that such cohomology groups realize the nilradical of a Borel ...

متن کامل

Mirabolic Langlands Duality and the Quantum Calogero-moser System

We give a generic spectral decomposition of the derived category of twisted D-modules on a moduli stack of mirabolic vector bundles on a curve X in characteristic p: that is, we construct an equivalence with the derived category of quasi-coherent sheaves on a moduli stack of mirabolic local systems on X. This equivalence may be understood as a tamely ramified form of the geometric Langlands equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008